New to the UK market is the unique Flavonoids micronized composition of Diosmin 150mg, Hesperidin 150mg and Horse Chestnut 150mg



Hemorrhoids, Legs` Circulation, Healthy, Normal Veins and Blood Vessels Function, 

Improved Circulation, Vegan, Gluten Free with GMP Certificate 


Flavonoids (or bioflavonoids; from the Latin word flavus, meaning yellow, their color in nature) are a class of polyphenolic secondary metabolites found in plants, and thus commonly consumed in the diets of humans.[1]

Chemically, flavonoids have the general structure of a 15-carbon skeleton, which consists of two phenyl rings (A and B) and a heterocyclic ring (C, the ring containing the embedded oxygen).[1][2] This carbon structure can be abbreviated C6-C3-C6. According to the IUPAC nomenclature,[3][4] they can be classified into:

The three flavonoid classes above are all ketone-containing compounds and as such, anthoxanthins (flavones and flavonols).[1] This class was the first to be termed bioflavonoids. The terms flavonoid and bioflavonoid have also been more loosely used to describe non-ketone polyhydroxy polyphenol compounds, which are more specifically termed flavanoids. The three cycles or heterocycles in the flavonoid backbone are generally called ring A, B, and C.[2] Ring A usually shows a phloroglucinol substitution pattern.


Flavonoids are widely distributed in plants, fulfilling many functions.[1] They are the most important plant pigments for flower coloration, producing yellow or red/blue pigmentation in petals designed to attract pollinator animals. In higher plants, they are involved in UV filtration, symbiotic nitrogen fixation, and floral pigmentation. They may also act as chemical messengers, physiological regulators, and cell cycle inhibitors. Flavonoids secreted by the root of their host plant help Rhizobia in the infection stage of their symbiotic relationship with legumes like peas, beans, clover, and soy. Rhizobia living in soil are able to sense the flavonoids and this triggers the secretion of Nod factors, which in turn are recognized by the host plant and can lead to root hair deformation and several cellular responses such as ion fluxes and the formation of a root nodule. In addition, some flavonoids have inhibitory activity against organisms that cause plant diseases, e.g. Fusarium oxysporum.[7] 


Flavonoids (specifically flavanoids such as the catechins) are "the most common group of polyphenolic compounds in the human diet and are found ubiquitously in plants".[1][10] Flavonols, the original bioflavonoids such as quercetin, are also found ubiquitously, but in lesser quantities. The widespread distribution of flavonoids, their variety and their relatively low toxicity compared to other active plant compounds (for instance alkaloids) mean that many animals, including humans, ingest significant quantities in their diet.[1] Foods with a high flavonoid content include parsley,[11] onions,[11] blueberries and other berries,[11] black tea,[11] green tea and oolong tea,[11] bananas, all citrus fruits, Ginkgo biloba, red wine, sea-buckthorns, buckwheat,[12] and dark chocolate with a cocoa content of 70% or greater. 


The citrus flavonoids include hesperidin (a glycoside of the flavanone hesperetin), quercitrin, rutin (two glycosides of the flavonol quercetin), and the flavone tangeritin. The flavonoids are much less concentrated in the pulp than in the peels (for example, 165 vs. 1156 mg/100 g in pulp vs. peel of satsuma mandarin, and 164 vis-à-vis 804 mg/100 g in pulp vs. peel of clementine).[14]


source: https://en.wikipedia.org/wiki/Flavonoid